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SUMMARY 

Fluid flow through a significantly compressed elastic tube occurs in a variety of physiological situations. 
Laboratory experiments investigating such flows through finite lengths of tube mounted between rigid supports 
have demonstrated that the system is one of great dynamical complexity, displaying a rich variety of self-excited 
oscillations. The physical mechanisms responsible for the onset of such oscillations are not yet fully understood, 
but simplified models indicate that energy loss by flow separation, variation in longitudinal wall tension and 
propagation of fluid elastic pressure waves may all be important. Direct numerical solution of the highly non-linear 
equations governing even the most simplified twodimensional models aimed at capturing these basic features 
requires that both the flow field and the domain shape be determined as part of the solution, since neither is known 
(I priori. To accomplish this, previous algorithms have decoupled the solid and fluid mechanics, solving for each 
separately and converging iteratively on a solution which satisfies both. This paper describes a finite element 
technique which solves the incompressible Navier-Stokes equations simultaneously with the elastic membrane 
equations on the flexible boundary. The elastic boundary position is parametized in terms of distances along spines 
in a manner similar to that which has been used successllly in studies of viscous free surface flows, but here the 
membrane curvature equation rather than the kinematic boundary condition of vanishing normal velocity is used 
to determine these distances and the membrane tension varies with the shear stresses exerted on it by the fluid 
motions. Both the grid and the spine positions adjust in response to membrane deformation, and the coupled fluid 
and elastic equations are solved by a Newtom-Raphson scheme which displays quadratic convergence down to low 
membrane tensions and extreme states of collapse. Solutions to the steady problem are discussed, along with an 
indication of how the timedependent problem might be approached. 
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1. INTRODUCTION 

The partial collapse of an elastic tube conveying fluid under sufficiently low transmural pressure (the 
difference between internal and external pressures) occurs in a variety of physiological settings. These 
include veins above the level of the heart, due to the reduction in hydrostatic pressure with height; 
abdominal veins just before they enter the chest, due to the abdominal4horacic pressure contrast; veins 
in the legs during muscle contraction; intramyocardial coronary blood vessels during systole; 
pulmonary blood vessels in the upper portions of the lung; arteries compressed by a blood pressure 
cuff or within the chest during cardiopulmonary resuscitation; large airways during forced expiration; 
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the ureter during peristaltic pumping; and o t h e r ~ . ’ ~  Interest in such flows stems not only from the 
intriguing mix of solid and fluid mechanics which governs their behaviour, but also from the possibility 
that fluid dynamical factors may play a role in human disease. Regions of low arterial wall shear stress 
appear to be those most subject to atheroscler~sis.~*~*~ Additionally, wheezing:*’** the Korotkoff 
sounds heard during blood pressure m e a s ~ r e m e n t ? ~ ’ ~ ’ ’ ~  flow oscillations in the cerebral cortex,” and 
vena cava ‘chatter’ during bypass may all be examples of self-excited flow-induced 
oscillations in partially collapsed tubes. The understanding of such oscillations may thus have clinical 
significance. 

Over the past years many laboratory experiments have been conducted to investigate the properties 
of fluid flow through partially collapsed tubes. Typically, a section of compliant tubing is mounted 
horizontally between two rigid tubes and sealed within a chamber, a configuration called a Starling 
resi~tor.’~’’~ The longitudinal tension, external pressure, flow rate and upstream and downstream 
pressures can then all be varied. Differing results more or less applicable to various physiological 
systems3 are obtained, but some effects are common to all investigations. These include flow rate 
limitation, in which the maximum flow rate does not increase with a decrease in downstream pressure, 
and self-excited oscillations, in which the tube undergoes large-amplitude variations in cross-sectional 
area and outflow rate.9*’5-23 Such oscillations occur over a wide range of parameter values and despite 
significant theoretical efforts remain incompletely understood. No single physical cause appears 
responsible for all the apparent oscillation types, which range fiom periodic oscillations of rather low 
frequency to aperiodic, possibly chaotic, high-frequency 

Until recently, theoretical elastic tube models were predominantly of two basic types: one- 
dimensional models in which flow variables are integrated over the tube cross-section with a simple 
elastic ‘tube law’ relating the cross-sectional area to the transmural p r e s s ~ r e , ~ . ~ ~ . ~ ~  and lumped- 
parameter models in which flow variables are also integrated along the tube, the geometry of the 
collapsible section is represented by a single time-dependent variable such as the tube’s minimum 
cross-sectional area, and the elastic properties of the tube are reduced to a relationship between the 
transmural pressure and the cross-sectional area at the point of maximum Both 
types of model have been successful at predicting the occurrence of selfexcited oscillations. 
Additionally, the lumped parameter models have emphasized the importance of external constraints 
imposed by rigid supports and have demonstrated the sensitivity of oscillatory instabilities to the 
amount of energy dissipated downstream of the con~triction.~~ Unfortunately, lumped-parameter 
models exclude the possibility of fluid-elastic pressure waves and therefore, not distinguishing between 
super- and subcritical flows, excluding choking. One-dimensional models, on the other hand and in 
agreement with experiment (see e.g. References 17 and 18), predict no steady flow if the fluid velocity 
anywhere matches or exceeds the propagation speed of small-amplitude pressure waves. Such models 
have also identified the phenomenon of flow limitation with supercritical flow speeds and the 
accompanying insensitivity to downstream pressure changes3’ and have demonstrated that elastic 
jumps, analogous to shocks in compressible fluids and hydraulic jumps in free surface flows, can occur 
in compliant tubes.2593 ‘4 (The propagation of elastic jumps has been proposed as an alternative 
mechanism for the production of Korotkoff and as an explanation for the ‘pistol shot’ 
sounds produced by leaky heart valves.33) However, such one-dimensional models in their simplest 
form are local in character. They may be able to predict the onset of oscillations based on local stability 
criteria, but they cannot model subsequent development of the instability. Additionally, experiments 
indicate that non-local effects may be important even at the onset. To overcome these drawbacks, 
recent work has emphasized hybrid models which combine the onedimensional approach with 
important aspects of the lumped-parameter models. Such hybrid models have included the effects of 
rigid upstream and downstream mounts, longitudinal tension in the elastic section374 and energy loss 
by intermittent flow separation downstream of the point of maximum c o l l a p ~ e . ~ ~ * ~ ~ * ~ ’  They confirm 
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that oscillations occur if the flow becomes supercritical anywhere in the elastic tube. A primary 
instability mechanism appears to be associated with the movement of the flow separation point in 
response to pressure waves propagating along the tube. The precise degree of energy loss in the 
separated flow is a critical factor in the instability and one that is parametized in a highly simplified 
manner in these models. 

Recently a very different mechanism has been proposed to account for the breakdown of steady flow 
in a collapsible tube4' and it is the investigation of this mechanism, in addition to the desire to study 
more complete fluid dynamic and solid mechanic formulations than the above simplified models allow, 
that has prompted numerical solution of the full Navier-Stokes and elastic membrane equations. The 
proposal relies on the fact that viscous shear stresses exerted by the fluid cause the longitudinal tension 
in the tube wall to decrease with distance downstream. For a given upstream value the tension may fall 
to zero at some point along the tube if the tube is long enough. Such a state of zero tension presumably 
results in extreme wall flexibility and unsteady motions. Initial study of low-Reynolds-number flow 
through a twodimensional channel with collapsible walls utilizing lubrication theory found that when 
the downstream tension became very low, major deformation of the wall occurred, resulting in large 
wall slopes and violation of the initial assumptions of the m ~ d e l . ~ '  The lubrication approximation was 
therefore subsequently abandoned and studies of both zero- 42 and n ~ n - z e r o - ~ ~  Reynolds-number flows 
through a twodimensional channel with a single elastic wall segment have begun. This simplified 
geometry was chosen not only for computational ease but also because previous experimental4474s and 

work indicates that channel flows subject to timedependent asymmetric deformations 
give rise to vorticity waves not seen with symmetric deformation. It should be noted that other authors 
have considered coupled fluid elastic problems in a variety of applications (see e.g. References 48-63), 
some of which were two-dimensional elastic tube or channel studies supporting a number of the 
conclusions drawn from the onedimensional and hybrid models discussed a b o ~ e ~ ~ ~ ' ~  but all have 
involved simplifications of the problem's elastic or hydrodynamic properties. We pursue such studies 
here without linearization of the fluid motions or restriction to small-amplitude boundary deformation 
and solve the fully non-linear Navier-Stokes and elastic membrane equations, albeit in the highly 
simplified geometry mentioned above and to be described in more detail in the next section. 

2. FORMULATION 

We consider the steady flow of an incompressible Newtonian fluid through a two-dimensional channel 
with an elastic wall which can suffer large-amplitude deformations. The geometry considered is shown 
in Figure 1. One segment of an otherwise rigid channel is replaced by a thin-walled membrane under 
longitudinal tension. The tension is held fixed at a specified value To at the right-hand attachment 
point, but otherwise varies owing to stresses exerted upon it by the fluid flow. The inflow is specified to 
be plane Poiseuille with flow rate Q, while the outflow is specified to be both parallel and stress-free. A 
long enough channel is generally employed so that the flow is fully developed before exiting the 
downstream end of the flow domain. No-slip and impermeable boundary conditions are applied on the 
side walls (including the elastic section), forcing both components of the velocity to vanish there. The 
pressure in the fluid is scaled by specifying Po at the lower exit point to be identically zero, and an 
external pressure P, is applied. 

Flow in such a geometry can be described by the two-dimensional Navier-Stokes equations, with 
the elastic properties of the boundary being modelled by simple force balance across a thin inertialess 
wall. The resulting coupled set of equations may be expressed non-dimensionally by taking uo as the 
characteristic velocity and H as the unit of distance. There are then at least two possible pairs of 
scalings for the pressure and tension: a dynamic scaling, poui for pressure and pouiH for tension, or a 
viscous scaling, pudH for pressure and puo for tension, where po is the fluid density and p is the 
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Figure 1. Domain geometry. Twodimensional channel with an elastic wall section of length L and undeformed height H .  

Membrane tension specified as To at the right attachment point. Pressure scaled to equal Po at the lower exit point, with an 
external pressure P, applied. Incoming flow is plane Poiseuille with flow rate Q; outflow is parallel and stress-fiee 

dynamic viscosity. We choose the first of these scalings so that viscosity enters the equations of motion 
only through the Reynolds number Re = pou&/p. With this nondimensionalization the steady 
incompressible Navier-Stokes equations become 

for the velocity components uj and pressure P, while the elastic membrane equations can be written as 

P - P, = - K T ,  (3) 

1 _ -  - - - 2  a V(u - i), dT 
ds Re (4) 

where T is the membrane tension, K. is the membrane curvature and ri and t̂  are the unit normal and 
tangential vectors respectively. Equation (3) relates the total normal stress on the membrane which 
results from the transmural pressure to the normal force exerted by the tension. The curvature by which 
the tension generates this force may be expressed as the derivative of the tangent angle to the elastic 
boundary along the membrane: 

The relationship between the tension in the membrane and the tangential shear stresses exerted on it by 
fluid motions is expressed by equation (4). The sign is chosen such that 7i is the outward normal and t̂  
points in the direction of increasing arc length s (the downstream direction for the undeformed 
membrane). We solve equations (1x4)  by finite element techniques in primitive fluid variables 
u, v and P, with two additional unknowns, membrane tension and height, active on the elastic 
boundary. 

3. COMPUTATION 

Previous numerical work on this problem42743 has employed an iterative scheme which decouples the 
solution of the fluid equations from that of the membrane equations. Briefly, such a scheme proceeds as 
follows. An initial membrane shape is assumed and equations (1) and (2) or their zero-Reynolds- 
number equivalents are solved in this specified geometry. The stresses exerted on the membrane are 
then calculated and equation (3) is used to update the membrane position. The process is repeated until 
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a solution is found which satisfies both the fluid and solid mechanics. Such a method is similar to 
iterative techniques used in early computations of viscous free surface In such flows the 
normal velocity and tangential shear stress must vanish and normal stresses must balance the product 
of surface tension and curvature at the free surface. The iterative schemes devised relax one of these 
boundary conditions, usually either the kinematic normal velocity (see e.g. References 64 and 67) or 
the normal stress balance (see e.g. References 65 and 67) condition, when solving the fluid equations 
and then use it subsequently to update the location of the free surface. The best choice of boundary 
condition to relax in the free surface problem depends on the surface tension of the f l ~ i d . ~ ' , ~ ~  For high 
surface tensions relaxation of the normal stress condition proves best, while for low tensions kinematic 
iteration proves more At intermediate tensions both schemes converge poorly, often only with 
some underrelaxation. The elastic membrane problem is similar, except that both components of the 
velocity vanish and the tension can vary with position on the boundary. The previously described 
elastic membrane iterative employs the normal stress balance condition to determine the 
boundary position and fails at low values of the membrane tension just as the comparable scheme does 
for free surface flows. This has prompted the current research into an alternative solution technique 
which can yield results over a wide range of membrane tensions and hopefully contribute to an 
understanding of the physical rather than numerical mechanisms behind the breakdown of steady flow 
in this system. The technique described in this paper again relies on experience gained by researchers 
of viscous free surface f10ws.69-77 It determines the position and tension of the elastic boundary and 
the interior pressure and fluid velocity fields by solving equations (1 H4) simultaneously using finite 
element techniques and spines to parametrize the elastic boundary location. For completeness we 
summarize the entire method in this section, but claim originality only in how the geometry of this 
particular problem is approached, how variable tension is incorporated and how the membrane 
curvature equation is used to directly determine the boundary position. 

Many other numerical methods have been devised to study problems with moving boundaries. These 
include, but are not limited to, the finite difference arbitrary Lagrangian-E~Ierian~~-~' and closely 
related deformable cell** methods as well as the marker-and-~el l~~-~~ and related volume-of-fluidg6 
methods and boundary element  method^.'^-^^ To a lesser extent the arbitrary Lagrangian-Eulerian 
scheme has been used in conjunction with finite element discretization.g0 Additionally, global mapping 
of an irregular and changing flow domain to a rectangular ~ p a c e ~ ' - ~ ~  on which standard finite 
difference discretization can be applied has also been used successfully (see e.g. References 94 and 
95), as have more exotic approaches such as expressing the moving boundary in terms of a localized 
force Space does not permit review of each of these methods in detail, but we have 
chosen an adaptive finite element method based on its straight-forward applicability to problems 
involving non-linear flows of moderate Reynolds number in irregularly shaped domains. Adaptation of 
the grid to the boundary shape, as determined by the solution of the problem, will turn out to be 
particularly advantageous, since the grid distortion is not confined to the boundary elements but is 
distributed through the domain. The remainder of this section details how we proceed. 

We begin by dividing the flow domain into six-node triangular finite element subdomains. The 
shapes and locations of these subdomains are linked to the position of the elastic boundary. This is 
accomplished by constructing the grid so that elemental nodes under the elastic section lie along radial 
spines which emanate from an origin whose position is in turn determined by the central membrane 
height. Each spine k is defined by the Cartesian co-ordinates of its base point, and $, and the 
direction from that point to the origin or equivalently the angle which the spine makes with the vertical, 
sk. The extensions of a number of these spines towards their origin outside the flow domain are shown 
with dashed lines in Figure 2, while the corresponding base points are marked with boxes. Also 
evident in this figure is the substantial change in the grid structure under the collapsible section which 
results from membrane deformation. One significant advantage of such grid adjustment is that the grid 
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Figure 2. Computational grid beneath the elastic section (a) before and (6) after membme deformation. Boxes indicate the 
location of some representative spine bases; dashed extensions above the domain point towards the spine origin. The thickened 
element in (6) is that shown in detail in Figure 3. Note that the actual computations were done with much higher resolution, as 

indicated in Section 4 of the text. 

is not overtaken by the boundary. Instead, the position of node i on spine k is given in terms of a fixed 
fraction @ of the spine height hk as 

where the spine height is simply the distance from the spine base to the elastic surface in the direction 
of the origin and is an unknown in the problem. All computations for this paper were done with a 
single origin, but generalization to multiple origins makes it possible to avoid singular grids even in the 
case of a very highly distorted and folded boundary. Additional refinement of the grid can be 
accomplished by manual adjustment of the spine origin position or by grid stretching. In these 
calculations we made provision for independent stretching in the horizontal and vertical directions but 
implemented only horizontal stretching downstream of the collapsible portion. This allowed increased 
resolution by finer grid spacing in the region of rapid flow expansion and simultaneous coarsening 
further downstream where the flow was nearly fully developed and less resolution was required. It also 
facilitated a smoother transition in finite element size from the distorted grid under the elastic section 
to the regular one downstream. 

Individual elements of the grid are mapped from global Cartesian (x, y) co-ordinates to local ([, q)  
co-ordinates as shown in Figure 3. The mapping here is done on local subdomains rather than globally 
as in a boundary-fitted global mapping scheme but is otherwise very similar, since the shape of the 
local subdomain depends on the elastic boundary position as does of come  the domain shape in a 
global mapping scheme. The variables u, v, P and Tare expanded isoparametically (same representa- 
tion for co-ordinates as variables) in area c o - o r d i n a t e ~ ? ~ ~ ~ ~  employing a mixed interpolation (see e.g. 



NAVIER-STOKES AND ELASTIC MEMBRANE EQUATIONS 1121 

Y 

b 
I 2 

I 1 

'4,- u'3/4) 

X 
Figure 3. Mapping between global (x, y)  and local ( I ,  q )  coordinates. Nodes 1-3 are velocity and pressure nodes, while nodes 
4-6 are velocity-only nodes. Spine height is an active variable on nodes 3, 5 and 2. and tension on 3 and 2, if the element 

is positioned such that these nodes lie along the elastic boundary 

Reference lOO), with u, v, x and y sharing quadratic and P and T linear expansions: 

Here Li and Ni are linear and quadratic shape functions respectively, with L i  = Ai/A 
(A = A l  + A2 + A3; Figure 3 )  and 

N I  = Ll(2L.l - l ) ,  N2 = L2(2L* - I ) ,  N3 = L3(2L3 - I ) ,  
(8) N4 = 4LlL.2, N5 = 4LzL.3, N6 = 4LlL3. 

Such shape functions are taken to be non-zero only within each individual element. Additionally, they 
have the properties that at any point within an element 

6 3 

i= 1 i= 1 

and at any node i 

Lj(Xi) = d,, 4 ( X i )  = 6,. (9b) 
Thus nodal velocities are defined at all six nodes of each element while pressure is an active variable 
only at nodes 1-3 (Figure 3). Velocities vary quadratically while pressure varies linearly between 
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nodes. Along the elastic boundary, only those shape functions associated with nodes which lie on it are 
non-zero and the elements have been oriented so that these always number 3, 5 and 2. Tension is an 
active variable at two of these (nodes 3 and 2) while membrane height is active at all three. The co- 
ordinates x and y of all nodes below the elastic boundary depend on both the boundary and spine origin 
positions and thus so too does the Jacobian of co-ordinate transformation Jo and its determinant for 
those elements which contain these nodes. Explicitly, 

where &/a<, ax/aq, ay /a< and ay/av can all be evaluated from Equations (7) and depend on h and 
8 through xi and yi (Equations (6)). 

Equations determining the nodal values of u, v, P, h and Tare derived by the Galerkin method of 
weighted residuals. The Navier-Stokes and elastic membrane equations are multiplied by the finite 
element basis functions and are integrated over the domain. Values of the variables are found such that 
these residuals vanish. Weighting the continuity equation ( 1 )  with the linear shape functions and 
integrating yields k algebraic equations, the same number as the number of pressure unknowns: 

Likewise, weighting the momentum equations (2) with the quadratic shape functions and integrating 
provides the 1 equations necessary to determine the nodal velocity values. Explicitly, the x-momentum 
equation yields 

with Galerkin weighted residuals Rfl of similar form stemming from the y-momentum equation. Here 
the divergence theorem has been applied to reduce derivatives within the integrals to first-order, 
consistent with the low-order expansions of equations (7). Making the transformations 

and 

the integrals in equations (1 l), (12) and Rfl can be written in terms of the local co-ordinates and 
evaluated for each element by Gaussian quadrature.’” Quadrature formulae of the same order as the 
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polynomial degree of the integrand are employed so that the integrals are evaluated exactly. Only those 
integrals containing two derivatives of the shape hc t ions  depend on the element geometry through 
the determinant of the co-ordinate transformation Jacobian. These must be evaluated for each element 
individually, while the remaining integrals have the same values for all elements. Since u and v are 
known on all boundaries except the outflow, where P and v are specified, the only momentum residual 
boundary integrals which must be evaluated are those contributing to equation (1 2) in the elements 
bordering the outflow. Boundary integrals for the interior elements cancel between neighbours, while 
on other exterior boundaries R!! and Py need not be assembled, since u and v are known. 

On the elastic portion of the boundary, membrane height and tension are additional unknowns to be 
evaluated. Residuals of equations (3) and (4) are orthogonalized with respect to the finite element 
quadratic and linear basis hc t ions  respectively, since spatial co-ordinates and thus h are expanded 
quadratically while tension is expanded linearly like pressure. Integrated along the elastic boundary, 
equation (3) thus yields 

When then integrated by parts and expressed in terms of local co-ordinates for an individual element, 
this becomes 

where 4 and ds/dL3 can be expressed as 

The derivatives dxldL3 and dyldL3 can be easily evaluated in terms of nodal co-ordinates using the 
isoparametric expansions given by (7). The endpoint terms T 1 4 1  and To40 make a net contribution 
only in those two elements containing either the first or the last node of the elastic membrane. Note 
that both 4 and dsldL3 are functions of x and y and therefore of spine height h. 

From the shear stress equation one can obtain the residual equations which make it possible to 
determine membrane tension. The unit normal and tangential vectors on the elastic boundary are 
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Substituting these into equation (4) and integrating along the boundary yields 

The partial derivatives with respect to global co-ordinates x and y in this expression can be easily 
written in terms of local co-ordinates [ and q using (130). The integrals in (18) then depend on the 
spine heights directly through nodal values xi and yi as well as indirectly through the determinant of the 
co-ordinate transformation Jacobian, IJol, and d d d L 3 .  Such dependences are important in finding a 
solution which satisfies equations (1 l), (12), Rf,  = 0, (14) and (18) simultaneously. 

By the finite element/Galerkin method we have reduced the continuous problem of equations (1H4) 
to a set of discrete non-linear algebraic equations. The non-linearities result from both momentum 
advection and membrane curvature. For a solution to exist, nodal values of u, v, P, h and Tmust be 
found such that residuals I& Py, R,", pe, and Rt vanish simultaneously. This can be done by a 
Newton-Raphson scheme, solving the linearized equations. 

iteratively. Here a is the vector of nodal unknowns, Aa = a,+I - a,, , R is the associated residual 
vector and n indicates the iteration number. Updated values are determined from the previous 
iteration a,, and since the scheme is based on a truncated Taylor series expansion for R, convergence 
to the solution Aa = 0 and R = 0 is quadratic as the solution is approached. In our calculations we are 
able to obtain a solution with max and max IRi(an)l < lop6 in typically four to 
six iterations when using zeroth-order continuation from a previously obtained solution. For such 
continuation to work at all, the parameter changes must of course be small enough so that the new 
values lie within the domain of convergence of a new solution. The size of this domain is particularly 
sensitive to errors in the estimation of the membrane position. One of the benefits of the Newton- 
Raphson scheme is that the Jacobian matrix aR/aa contains information on the sensitivity of the 
solution to changes in parameter values. This information can be used to construct an initial guess from 
a previous solution (first-order continuation), making larger parameter steps between solutions 
possible. Additionally, the Jacobian contains information about the stability of a converged solution to 
small perturbations (see e.g. References 74 and 102), and although not yet studied in detail for this 
problem, such information may prove very valuable in understanding the physical breakdown of the 
steady solutions to be identified in Section 4. 

The element level structure of equation (19) is illustrated in Figure 4. In general, the top left 
15 x 15 submatrix of the Jacobian array contains non-zero values for all elements in the domain. For 
elements lying entirely between two rigid boundaries, these are the only non-zero entries. For elements 
which lie under but do not border the elastic membrane, columns 16-18 of rows 1-15 may also be 
non-zero, because the shape of these elements is affected by the position of the elastic boundary. 
Finally, the elements directly neighbouring the flexible boundary are those containing nodes on which 
the membrane height and tension are active variables, and for these the last five rows of the element 
level Jacobian can have non-zero entries as well. The global Jacobian matrix aR/aa, solution 

- ail < 
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Figure 4. Element level structure of the Jacobian matrix and solution increment and residual vectors. The right-hand five columns 
and bottom five rows of the Jacobian have non-zero entries only for those elements lying under the elastic membrane or 

bordering it (see text) 

increment Aar and residual vector R are assembled from these element level contributions. We employ 
a frontal solution technique,'03-'" so the assembly proceeds element-by-element and intermittently. 
As variables are fully summed (no longer depend on subsequent elements or equations) they are 
eliminated. This is followed by fkther assembly and Gaussian elimination, and when complete, the 
solution is determined by back substitution. Such an algorithm is useful in minimizing memory 
requirements and imposes no stringent constraints on node numbering. This is particularly important in 
moving boundary problems, since the spine orientations are unrestricted by nodal requirements and 
can be adapted freely to the domain ge~metry.'~ The front width and thus memory storage 
requirements of this technique does depend on the element numbering, and to keep this as small as 
possible, the elements are numbered sequentially along the shortest dimension of the domain. 

To successfully implement the Newton-Raphson scheme outlined above, one must of course 
compute the Jacobian matrix correctly. Derivatives with respect to spine heights are difficult to evaluate 
if the residuals are expressed in global co-ordinates, since then both the integrand and the limits of 
integration depend on the spine height, but when evaluated in the local computational domain, this 
difficulty van is he^.^'.'^ In the isoparametrically transformed co-ordinates the element shapes are fixed 
and the limits of integration constant. It then remains important only to correctly identify all the spine 
height dependences, including those hidden in the determinant I JO 1, as identified above. Also note that 
if the position of the spine origin is allowed to adjust in response to membrane deformation, then O k  for 
all spines depends on the membrane position. A convenient way of defining this dependence is to 
express the origin position in terms of a particular spine height, e.g. the mid-membrane height hmi+ 
Then additional derivatives with respect to hmid may be readily evaluated for all elements under the 
moving boundary and incorporated into the Newton-Raphson scheme. Alternatively, the origin 
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position may be held fixed during the iteration process and updated with the initial guess before 
continuation to a new solution. 

4. RESULTS 

Table I lists the properties of some solutions determined as above and displayed in Figures 5-9. The 
control parameters Re, P, and To have been defined previously (see Section 2), P, = P - P, is the 
transmural pressure across the upper boundary immediately before the collapsible section of the 
channel, and the remaining tabulated quantities are the extrema of the field variables: membrane height 
y, horizontal velocity u, vertical velocity v, pressure P and membrane tension AT = T - TO. All 
solutions are for a channel with dimensions of 5 units before, 5 units under and 20 units after the elastic 
section and for an inflow rate Q of unity. A computational grid of 5 192 elements was used. These were 
distributed as in Figure 2, with 22 spanning the vertical dimension in the undeformed portion and 
subtotals of 990 before, 1452 under and 2750 after the elastic section. 

Figure 5 displays velocity streamlines for three solutions with Reynolds numbers of 10, 100 and 
300. The contours are scaled the same for all three plots, with equal intervals between neighbouring 
streamlines. Thus the distance between adjacent streamlines is inversely proportional to the average 
fluid velocity in that region. The maximum collapse of the channel wall is about 83% in all three cases. 
In both the Re = 100 and 300 solutions the flow separates downstream of the point of maximum 
collapse, with detachment occurring earlier at higher Reynolds number. A series of downstream eddies 
is generated and one striking feature is the small length scale of these. Although increasing with 
increasing Reynolds number, the eddy size remains q l ) ,  not O(Re) as seen in separating external 
flows behind bluff obstructions and predicted by Helmholz-Kirchoff free streamline models of laminar 
separation (see e.g. References 107 and 108). The results here seem to be in better agreement with the 
Prandtl-Batchelor description'08*'w which allows for finite eddy recirculation velocities. Such 
velocities in these solutions can be quite significant (Table I, urnin) and secondary flow separation 
within the eddy, as predicted by the Prandtl-Batchel~r'~~ but not the Helmhotz-Kir~hof?~' model, 
then occurs as the fluid in the eddy flows against an adverse pressure gradient along the upper 
boundary. Confinement of the flow thus plays a significant role in the structure and scale of laminar 
flow separation, and adoption of theories developed in the context of unconfined flows (as in Reference 
1 10) is likely to prove problematic. 

Figure 6 illustrates the sensitivity of the large-scale flow structure to the degree of channel 
obstruction. All three solutions plotted have Re = 100, with the maximum membrane collapse varying 
between 78% and 98%. Note that although the eddy structures become more complex with increasing 
collapse, the lengths of the downstream eddies remain constant. This is true even though the flow 
separation point moves upstream as the fluid velocity increases and pressure decreases in the 
constricted region (see u, and Pmi. entries in Table I). Thus, although varying slowly with Reynolds 
number (Figure 5),  the eddy length scale appears to be insensitive to the degree of channel wall 
collapse. Eddy strength or total eddy circulation, on the other hand, does depend on the degree of 
collapse, increasing with increasing constriction. As recirculation eddy strengths increase, the flow 
between them takes on a remarkably square configuration, with regions of nearly horizontal flow 
connected by very narrow regions of significant vertical velocity (see Figures 5c and 6c). 

The degree of membrane collapse in these solutions is determined by the membrane tension and 
internal fluid pressure, since both the external and exit pressures are held fixed. When horizontal 
variations in the internal pressure are small compared with the external pressure, membrane collapse 
occurs fairly symmetrically about the membrane midpoint. As the degree of channel collapse 
increases, however, the internal pressure in the fluid rises upstream of the obstruction. This introduces 
horizontal asymmetry in the membrane deformation, noticeable in Figure 6c and W e r  illustrated in 
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Figure 5. Velocity streamlines for three solutions with Reynolds numbers (a) 10, (b) 100 and (c) 300. Maximum channel collapse 
is about 83% in all three. Dashed lines indicate streamlines of value zero or one. The remaining streamlines are scaled the same 

for all three plots, with equal intervals between neighbouring values 

Figure 7. In Figure 7 membrane height is plotted against horizontal position for various tensions at 
three different external pressures. In Figure 7a the external pressure is high, and despite the increase in 
the internal fluid pressure which accompanies collapse, the transmural pressure remains negative 
(Table I). Collapse thus occurs along the full length of the membrane for all values of tension shown. 
Figure 7c illustrates the opposite behaviour. Low external pressures and thus positive transmural 
pressures yield a bulging profile, with the degree of deformation increasing with decreasing tension. 
Between these extreme cases lie the solutions of Figure 7b in which the external pressure is moderate. 
For high values of To the membrane is collapsed along its entire length. At lower tensions, however, the 
upstream pressure needed to drive the fluid through the constricted channel mounts and the transmural 
pressure becomes positive at the upstream end. The resulting wall shape is convex at the upstream end 
and concave at the downstream one. The sign of the curvature changes at the position where the 
transmural pressure equals zero. 

For a given degree of collapse the shear stresses exerted by the fluid decrease with increasing 
Reynolds number (see ATentries in Table I for Figure 5) ,  because the fluid viscosity decreases and the 
velocity profile through the constriction changes only little. Conversely, for a given Reynolds number 
and thus constant viscosity the maximum shear stresses exerted by the fluid on the membrane increase 
as the constriction narrows (Table I, Figure 6). Not only does the maximum change, but so too does the 
stress distribution along the membrane. Figure 8 plots the variation in membrane tension with position 
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a ymin= 0.2 2 

ymin= 0.08 b 
- . . . . . . 

ym*" = 0.02 C 

0 5 10 15 20 25 30 

X 

Figure 6. Velocity streamlines for three solutions with Reynolds number 100. Membrane tension and thus maximum collapse 
varies between them, withy,,,i. taking values of (a) 0.22, (b) 0.08 and (c) 0.02. Dashed lines indicate streamlines of value zero or 

one. The remaining seeamlines are scaled the same for all three plots, with equal intervals between neighbouring values 

for those solutions of Figure 7. In general the elastic membrane is under greater tension at the upstream 
end than at the downstream one. However, the minimum value does not necessarily coincide with that 
at the right-hand side, To. When flow separation occurs, the minimum tension occurs just downstream 
of the maximum collapse, at the point of flow detachment (Figures 8a and 8b). Here the tangential 
velocity along the elastic boundary vanishes, as does the shear stress. Across the separation point the 
tangential velocity and shear stress change sign and the longitudinal membrane tension increases to 
either side. Similarly, in the bulging cases (Figure 8c) greatly reduced tangential flow velocities at the 
upstream end of the membrane result in very low values of shear stress there. In these cases the 
maximum tension can occur just before the right-hand membrane attachment point if the deformation 
is severe. Note, however, that in all these solutions the magnitudes of the variations in membrane 
tension are small, never exceeding 6.5% of To in the solutions of Figures 5-8 (Table I). 

Figure 9 illustrates a series of more extreme cases. In these the external pressure is of the same order 
as the internal pressure, so 'he transmural pressure along the membrane is very low. Membrane height 
is plotted against horizontal position for To ranging between 6.6 and 0.15. For the higher values of TO 
the membrane deforms little (curve A in Figure 9) and rather substantial reductions in tension cause 
little change in position. Then quite suddenly, for a small decrease in the tension, the channel wall 
collapses to a position represented by curve B. Further reductions in To yield solutions in which the 
upstream end of the elastic membrane bulges outwards and the downstream end inwards (curve c) as 
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Figure 7. Membrane height y versus horizontal position x for various tensions (Table I) at external pressures of (a) 100, (b) 10 
and (c) 0. At high external pressures the membrane is collapsed along its entire length, at moderate external pressures it can take 
on a partially collapsed, partially bulged configuration for low values of tension, and at low external pressures it expands 

outwards along its entire length 

in the lowest-tension case of Figure 76. At still lower tensions solutions are found in which the 
curvature changes sign twice (curve D in Figure 9). The membrane is partially collapsed at the 
upstream end, bulges outwards in the middle and is partially collapsed again at the downstream end. 
Such solutions show substantial horizontal variations in membrane tension. The tension has its 
maximum value at the upstream end, is fairly constant in the middle and reaches a minimum just before 
the right-hand attachment point. The relative magnitudes of these variations are large, approaching 
50% of To, so that the overall membrane shape is likely to be significantly different fkom that which 
would be obtained with a constant tension model. 

5 .  CONCLUSION 

We have successfblly solved the non-linear equations governing fluid motion in a channel with an 
elastic boundary. We have done so assuming that the motions are time-independent and have found 
solutions which simultaneously satisfy the steady Navier-Stokes and elastic membrane equations. 
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Figure 8. Variations in membrane tension AT = T - To with horizontal position x for those membrane configurations plotted in 
Figure 7. These variations arise owing to shear stresses exertcd by the fluid motions on the membrane. Note that for the most 

deformed cases (solid m e s )  the minimum tension does not OCCUT at the right-hand attachment point 

Numerical convergence remains quadratic when care is taken in constructing the grid. Particular 
sensitivity was noticed at the right-hand side of the elastic section when the element size there, owing 
to deformation of the elastic boundary, did not match that of the regular non-deformed grid 
downstream. In some cases substantial gains in convergence rates were obtained by repositioning the 
spine origin and compressing the downstream grid so that changes in element size were gradual. With 
the present spine configuration, however, limits are reached when the slope of the downstream end of 
the elastic membrane becomes nearly vertical. Such limits are readily overcome by adapting the 
methods used here to the particular membrane shape of interest. Incorporation of multiple spine 
origins would prove usefi.11 for cases in which the elastic membrane is sucked downstream of its right- 
hand attachment point. The generalizability of the spine method to such complex boundary geometries 
makes it particularly appealing for W e r  work on this problem and related moving boundary 
problems in general. 

The steady solutions we obtained and discussed in this paper display complex flow structure and 
boundary shapes, with the large-scale structure of the flows being significantly influenced by the 
geometry of the boundary and the confinement of the flow. Some of these solutions are likely to be 
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Figure 9. Membrane height y versus horizontal position x for solutions of low transmural pressure and very low membrane 
tension. The sequence proceeds from A to D with To ranging from 6.6 to 0.15 in steps of 0.1 (except for the last step which has an 
increment of 0.05). The external pressure is the same in all cases. Note that four quite distinct regimes of membrane shape are 

accessed by the solutions 

unstable and would be time-dependent if so allowed. This raises the question of how readily the 
method described in this paper can be incorporated into a time-dependent code. An Adams-Bashforth 
predictor, trapezoid rule corrector scheme (see e.g. Reference 11 1) should be readily adaptable to this 
problem as it has been to viscous free surface One must in turn question the validity of the 
simple membrane model used here in a time-dependent calculation. In this model we held To constant 
at the right-hand side of the membrane. In doing this, we implicitly assume an initial stress 
configuration @restretch) of the membrane consistent with the subsequent loading, displacement and 
tension of the solution. This poses no problem for the steady solution, but in a time-dependent analysis 
such implied initial conditions would change with changes in the membrane deformation and this is 
unsatisfactory. A more physically appealing description would be to treat the membrane as a two- 
dimensional beam, or in three dimensions as a shell, and solve the non-linear equations of elasticity for 
Lagrangian displacements of the boundary. These equations could replace the two membrane 
equations in the current formulation and be incorporated into the finite element spine algorithm by 
expressing the nodal co-ordinates of the grid in terms of membrane displacements, allowing for both 
vertical and lateral deformation of the elements in response to that of the elastic boundary. Such an 
effort is likely to yield a rich reward in the understanding of the physical breakdown of steady flow in 
this coupled fluid elastic problem. 
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